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1. Applications for L3DE

In this section, we mainly demonstrate two downstream ap-
plications for our proposed L3DE: 1.) Fake video detec-
tion and 2.) Generative video refinement.

*Corresponding author.

1.1. Fake Video Detection

L3DE is designed to evaluate the 3D real world simula-
tion capabilities of AI-generated videos, enabling it to dis-
tinguish low-quality AI-generated videos from real-world
ones. Motivated by this capability, we conduct fake video
detection experiments to assess how well L3DE performs
on this task. This can be achieved by setting a threshold
on the L3DE score, allowing us to classify videos as real
or fake based on their ability to simulate the real 3D visual
world.

Specifically, we use fake videos from our 3D reconstruc-
tion verification set together with those from [29] and an
equal number of unseen in-the-wild real videos from Pexels
[15] to build a fake video detection benchmark. As there is
currently no open-source general fake video detector to the
best of our knowledge, we adapt fake image detection meth-
ods for videos. To do this, we compare L3DE fusion scores
with existing fake image detection methods [21, 26, 27] by
averaging frame-wise predictions to produce a final predic-
tion for each video. The results are presented in Table 1.

The results indicate that L3DE scores exhibit strong per-
formance in fake video detection, even though L3DE is not
specifically designed for this task. Across videos generated
by different models, L3DE scores generally achieve higher
accuracy than image-based fake detection methods. These
results suggest that most synthesized videos still have sig-
nificant gaps in 3D simulation capabilities. In conclusion,
L3DE scores demonstrate strong performance in fake video
detection, despite not being specifically designed for this
task.

1.2. AI-Generated Video Refinement

In current generative videos with regional artifacts, such
artifacts often necessitate discarding the entire video if it
does not meet the criteria for downstream tasks. However,
with L3DE’s ability to identify and localize artifact regions,
we can achieve AI-generated video refinement by removing
these artifacts in a 3D-consistent manner.

Specifically, we utilize L3DE activation values to local-
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Method Input MiniMax Kling 1.5 Runway-Gen3 Luma Dream Machine CogVideoX Vidu Sora Average

CNNDetection [26] Image 49.92 50.02 50.00 50.45 50.07 50.00 49.91 50.05
DIRE [27] Image 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
NPR [21] Image 60.19 67.91 64.99 54.06 35.79 36.04 60.82 54.25

L3DE Video 66.51 82.52 72.19 83.38 76.73 70.01 56.31 73.14

Table 1. Fake video detection performance of L3DE scores and image-based approaches. The reported metric is accuracy with all values
presented as percentages.
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Figure 1. A qualitative result of generative video refinement. In
this example, bounding boxes highlight the regions where artifacts
are detected in the original video. After refinement, these artifacts
are successfully removed across all frames of the video.

ize the regions of artifacts in the keyframes of the downsam-
pled clip. We then employ SAM-2 [17] to refine and prop-
agate the masks across the entire original generative video.
Inspired by [12], we implement a 3D-GS-based multi-view
consistent inpainting iteratively using LaMa [20].

We demonstrate our results for video refinement in Fig-
ure 1. Based on our findings, the artifact-detection capabil-
ity of L3DE can effectively guide the post-processing step
of video refinement, helping to remove artifacts in genera-
tive videos.

2. Data Processing
In this section, we detail our data processing procedures, in-
cluding raw video processing and video feature extraction.

2.1. Raw Video Processing
We follow the approach introduced in [2] for raw video
processing. First, we collect an open-world, in-the-wild
long video dataset from Pexels [15], covering a wide
range of content with varying aspect ratios, resolutions,
and frame rates. Figure 2 showcases the diversity of our
dataset. To avoid biases caused by cuts and fades, we apply
PySceneDetect [4] to the long videos.

Next, to prepare paired data, we slice these videos into
equal-length clips of 4 seconds. For videos that do not
match the 16:9 aspect ratio, we apply a center crop and re-
size them to a resolution of 1024×576 with 25 frames. Ad-
ditionally, we use the first frame of these processed video

clips as image prompts for stable video diffusion [2] to gen-
erate paired synthetic samples. Moreover, we provide visu-
alizations of randomly sampled paired videos in Figure 7.
As introduced in the main paper, we sample 160,000 paired
videos for training the L3DE models.

2.2. Video Feature Extraction
We extract video features using different foundation models
following their official implementation: For appearance
features, we extract frame-wise features from the DINOv2
ViT-G model [13]. For motion features, we input adja-
cent frames into RAFT [25] to obtain the optical flow se-
quence of the entire video. For geometry features, we ex-
tract per-frame metric depth using the UniDepth v2 ViT-S
model [16].

To align the inputs from different proxies, we use the
metric depth and DINOv2 features of the first 24 frames of
the video clips, since the optical flow maps are calculated
based on adjacent frames. This strategy ensures that L3DE
simultaneously captures different modalities of 3D proxies.

2.3. The Impact of Data Diversity
Our goal is to construct a diverse training dataset to im-
prove the robustness of L3DE. Diversity in training data
plays a crucial role in enhancing generalization by expos-
ing the model to a broad range of real-world and challeng-
ing scenarios. While data diversity can encompass various
factors—such as object motion, scene complexity, and en-
vironmental variations—we focus on two key aspects in our
analysis: (1) the role of object motion (static vs. mixed
static-dynamic scenes) and (2) the impact of scene diversity
(indoor-only vs. mixed indoor-outdoor scenes). These con-
trolled experiments illustrate how different types of training
data contribute to model performance, reinforcing the im-
portance of a diverse dataset.

Effect of Object Motion To assess the impact of object
motion, we train two models using different datasets: one
on 10,000 static-scene real and synthetic videos (1:1 ratio),
and the other on an equally sized dataset that includes both
static and dynamic scenes. Both models are evaluated on
a 2,000-sample test set, which consists of an equal number



Figure 2. Our collected real-world, in-the-wild videos encompass a wide range of visual content, from indoor to outdoor scenes, including
people, animals, landscapes, food, and more.

Figure 3. Interface for human rating annotation. Users can pro-
vide a rating in the scoring section below after watching the video
above.

of real and synthetic videos featuring mixed motion. The
synthetic videos are generated using Kling [6]. As shown
in Table 2, the model trained solely on static scenes under-
performs compared to the one trained with motion diversity
(69.55 vs. 77.70), confirming that incorporating object mo-
tion in training significantly improves generalization.

Effect of Scene Diversity To analyze the effect of scene
diversity, we train one model using 10,000 indoor real and
synthetic videos (1:1 ratio), and another using 10,000 mixed
indoor-outdoor videos. Both models are evaluated on a
2,000-sample mixed indoor-outdoor test set, maintaining a
1:1 ratio of real to synthetic videos. As seen in Table 2, the

Experiment Training Data Test Data Accuracy

Static-only Static-scene videos Mixed-motion videos 69.55
Mixed-motion Static + dynamic videos Mixed-motion videos 77.70

Indoor-only Indoor videos Mixed indoor-outdoor 67.60
Indoor + Outdoor Indoor + outdoor videos Mixed indoor-outdoor 76.55

Table 2. Impact of Data Diversity on Model Performance. Train-
ing on diverse data significantly improves accuracy.

model trained only on indoor data exhibits lower accuracy
(67.60 vs. 76.55), demonstrating that exposure to a wider
variety of environments enhances model robustness.

3. L3DE Architecture

In this section, we provide details about the L3DE architec-
ture, including both the single-proxy and fusion versions.

3.1. Single-proxy Network

First, we illustrate our design of the single-proxy version
of the L3DE network in Figure 4(a). Given a single aspect
proxy, such as frame-wise appearance features of a video
as input, the 3D ConvNet produces a corresponding con-
fidence score for the video. Specifically, the single-proxy
L3DE is a single-branch 3D convolutional network focus-
ing on capturing spatiotemporal features from a single input
modality.

The network begins with sequential 3D convolutional
layers that progressively encode high-level representations
of the input through non-linear activations and feature re-
finement. After the convolutional stages, the feature map is
flattened into a 1D vector, which is passed through a fully
connected layer to reduce dimensionality. The final predic-
tion is performed using another fully connected layer with
a sigmoid activation, producing a confidence score.
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Figure 4. The design of both single-proxy network shown in part (a), and fusion network illustrated in part (b).
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Figure 5. The detailed architecture of fusion network, a 3D convolutional neural network designed for multimodal feature fusion. The
network takes three input streams: Appearance Features (1536 channels), Motion Features (2 channels), and Geometry Features (1 chan-
nel). Each stream undergoes a series of 3D convolutional layers with ReLU activations before being concatenated into a 384-channel fused
representation. The concatenated features are further processed through additional convolutional layers, followed by flattening and fully
connected layers.

3.2. Fusion Network

Next, we illustrate the design of the fusion version of
L3DE in Figure 4(b). In detail, the fusion network is a
3D ConvNet integrating appearance, motion, and geomet-
ric features through a multi-branch architecture. Each input
modality—appearance features, motion features, and geo-
metric features—is processed separately using specialized
3D convolutional layers, which hierarchically encode spa-
tiotemporal information through non-linear activations and
down-sampling via strided convolutions.

The outputs of the three branches are concatenated along
the channel dimension, enabling the model to jointly lever-
age complementary features from all modalities, in line
with prior efforts [7]. The fused representation undergoes
further refinement through additional convolutional layers
that capture high-level correlations across the integrated
features. The network concludes with two fully connected
layers and a final sigmoid activation for score prediction.

We also provide the architecture details of the fusion
network in Figure 5. Note that each single-branch model
adopts the same architecture as its corresponding branch in
the fusion network.

3.3. Ablation Study

In this section, we conduct an ablation study to analyze
the impact of contrastive loss and feature fusion strategies
on distinguishing real and synthetic videos in L3DE. As
shown in Table 3, both contrastive loss and fusion strate-
gies play a crucial role in model performance. We compare
two feature fusion methods: (1) Element-wise Addition
(Add), where features from different sources are summed
component-wise; and (2) Feature Concatenation (Concat),
where features are stacked along the channel dimension to
retain independent information. First, comparing the Add
and Concat fusion strategies, we observe that Concat con-
sistently outperforms Add. Without contrastive loss, Con-
cat achieves 68.77%, surpassing Add (66.01%), indicating
that concatenation preserves richer feature representations.
When contrastive loss is introduced, performance improves
significantly in both fusion strategies (+3.25% for Add and
+4.37% for Concat), confirming that the loss function en-
hances feature discrimination. Our L3DE setting (Concat +
Contrastive Loss) achieves the highest accuracy (73.14%),
as highlighted in Table 3. These results demonstrate that
contrastive loss effectively boosts performance by improv-
ing the feature separation between real and synthetic videos.
Additionally, the superior performance of Concat over Add



Fusion Strategy Contrastive Loss Accuracy (%)

Element-wise Addition
✗ 66.01
✓ 69.26

Feature Concatenation
✗ 68.77
✓ 73.14

Table 3. Ablation study on contrastive loss and feature fusion
strategies (Concat vs. Add). The highlighted row represents our
setting and results.

suggests that maintaining richer feature representations is
beneficial for this task. Thus, we adopt the Concat + Con-
trastive Loss setting as the default configuration in L3DE.

3.4. Implementation Details
We implement our 3D ConvNet using PyTorch [14]. The
models are trained with a learning rate of 1e-4 and a batch
size of 20. For video generation with SVD-XT [2] and train-
ing of L3DE models, we utilize NVIDIA A100 GPUs. Ad-
ditionally, NVIDIA 4090 GPUs are used for conducting 3D
reconstruction experiments. We follow the official imple-
mentation for Grad-CAM [19] visualization.

4. User Study
In this section, we provide detailed descriptions of the user
studies mentioned in the main paper.

4.1. User Study for Video Ratings
We conduct a user study involving 15 volunteers, who pro-
vide a total of 4,500 annotations on 300 randomly selected
generative videos from our dataset. Annotators are recruited
via our internal platform. Participants are aged between 20
and 40, come from diverse educational backgrounds, and do
not possess specialized computer vision knowledge, ensur-
ing broad representativeness.

To ensure annotation quality, volunteers complete a pre-
labeling task following previous work [5, 9] and only those
showing consistent and accurate judgments qualify for the
main study.

Qualified participants receive clear scoring guidelines to
ensure consistency. The guidelines explicitly instruct them
to evaluate the realism of videos based on 3D visual coher-
ence in appearance, motion, and geometry, rather than se-
mantic content or other unrelated factors. Participants rate
each video’s realism on a 1 to 5 scale, with clear definitions
provided:
• Score 1: Videos exhibit obvious visual artifacts, severe

geometry deformation, unnatural motion, or evident syn-
thetic features.

• Score 2: Videos have significant artifacts clearly distin-
guishable from real ones, significantly impacting realism.

• Score 3: Videos contain noticeable but non-disruptive ar-
tifacts, moderately realistic overall.

• Score 4: Videos closely resemble real-world footage with
minor and infrequent artifacts.

• Score 5: Videos are indistinguishable from real-world
footage, exhibiting minimal to no noticeable artifacts or
inconsistencies.
Participants rate all 300 videos through our internal an-

notation interface (Figure 3). After collecting annotations,
we then compute the Spearman correlation coefficients be-
tween these human ratings and the L3DE scores across dif-
ferent modalities. Moreover, to further verify L3DE’s align-
ment with human perception, we conduct additional hu-
man evaluations on the subset ”Generated Videos for In-the-
wild Scenes.” These evaluations comprehensively validate
our method’s performance on the same dataset, facilitating
comparison with the reconstruction-based validation.

4.2. User Study for Grad-CAM Region Ratings
To evaluate the interpretability and effectiveness of the lo-
calized regions identified by L3DE (via Grad-CAM), we
conduct an additional user study involving 10 qualified vol-
unteers. Participants review 40 randomly selected genera-
tive videos from our dataset, each presented alongside visu-
alizations highlighting artifact regions.

Among these 40 videos, for each modality (appearance,
motion, and geometry), we randomly select 10 diverse
videos. Additionally, we insert 10 videos with randomly
generated Grad-CAM highlights serving as a control group
to mitigate potential participant biases toward highlighted
regions.

Participants view each video along with the correspond-
ing visualization and rate the relevance of highlighted re-
gions to the observed visual artifacts using the following
scale:
• Score 1: Highlighted regions are irrelevant or poorly

match the perceived artifacts.
• Score 2: Highlighted regions slightly match perceived ar-

tifacts but miss major inconsistencies.
• Score 3: Highlighted regions partially match perceived

artifacts.
• Score 4: Highlighted regions generally reflect perceived

artifacts with minor discrepancies.
• Score 5: Highlighted regions accurately reflect major per-

ceived artifacts.
Participants are unaware that 10 of the provided visu-

alizations are randomly highlighted (random baseline) to
minimize bias. We specifically evaluate these procedures
on the subset ”Generated Videos for In-the-wild Scenes” to
verify L3DE’s effectiveness in localizing artifacts under re-
alistic conditions. Average scores across participants quan-
tify human plausibility, as presented in the main paper. Ad-
ditionally, 10 participants manually annotate regions they



Visual Quality Motion Quality Temporal Consistency

EvalCrafter 55.4 45.0 56.7
Ours 67.0 43.6 58.0

Table 4. Correlation between L3DE scores and human annota-
tions from the ECTV dataset. Appearance, motion, and fusion
scores correspond to visual quality, motion quality, and temporal
consistency, respectively.

perceive as unrealistic in 30 unseen videos. This serves as
a further validation step for Grad-CAM localization, allow-
ing us to quantitatively evaluate pixel-level correlations be-
tween human annotations and Grad-CAM highlighted re-
gions.

5. More Experiments for L3DE
5.1. Additional Comparison with Baselines
To further assess the generalizability of L3DE, we compare
its performance against EvalCrafter [9] using correlation
metrics on the EvalCrafter Text-to-Video (ECTV) Dataset.
EvalCrafter evaluates video quality across multiple dimen-
sions, among which visual quality, motion quality, and tem-
poral consistency are the most relevant to L3DE’s evalua-
tion criteria. As shown in Table 4, L3DE achieves a higher
correlation with human annotations in terms of visual qual-
ity (+11.6%) and temporal consistency (+1.3%), demon-
strating its strong ability to assess both appearance and tem-
poral coherence. L3DE achieves a comparable correlation
in motion quality (43.6% vs. 45.0%), indicating its effec-
tiveness in capturing motion fidelity. These results suggest
that L3DE provides a more comprehensive and robust eval-
uation, particularly in aspects that contribute to overall per-
ceptual quality.

5.2. Comparison with External Human Preference
Benchmark

To further validate the generalizability and robustness of
our L3DE results, we compare the ranking of generative
video models obtained by L3DE against the publicly avail-
able large-scale human preference leaderboard from Video
Arena [1], which aggregates extensive user votes. Although
the datasets and specific videos differ, the model rankings
obtained by L3DE closely align with those in the Video
Arena leaderboard as shown in Table 5. Notably, both as-
sessments consistently identify similar high-performing and
lower-performing generative models. This alignment fur-
ther confirms that L3DE effectively captures general human
perceptual judgments regarding video realism, strengthen-
ing the validity of our evaluation framework.

5.3. More Qualitative Results
In this section, we provide additional qualitative results of
L3DE for reference. Specifically, we illustrate the Grad-

Generative Model L3DE Score ↑ Arena ELO ↑ Ranking (Ours / Arena)

Sora [3] 0.8895 1077 1 / 1
MiniMax [11] 0.7932 1067 2 / 2
Kling 1.5 [6] 0.7518 1058 3 / 3
Runway-Gen3 [18] 0.7162 1017 4 / 4
CogVideoX [28] 0.6104 811 5 / 6
Luma [10] 0.5062 997 6 / 5

Table 5. Comparison of generative model rankings obtained by
L3DE and human preference judgments from Video Arena [1].
Rankings only consider models appearing in both our 3D visual
simulation benchmark and the Video Arena leaderboard. Although
datasets differ and there are minor discrepancies in model versions
due to rapid iterations in commercial models, the consistent rank-
ing demonstrates L3DE’s alignment with general human percep-
tual judgments.

Figure 6. Both clips are from Sora [3]. The first row highlights
implausible liquid-glass-table interaction (Score: 0.7256), while
the second reveals an incorrect human scale (Score: 0.0023).

CAM results and analyses of L3DE’s appearance, motion,
and geometry components in Figures 8, 9, and 10, re-
spectively. We further include comprehensive qualitative
examples from the Fusion Grad-CAM analysis, highlight-
ing complex artifacts captured by integrating multiple cues.
Figure 6 demonstrates cases involving physically implausi-
ble interactions, such as abnormal behaviors of liquids in-
teracting with glass and tables, as well as incorrect human
scaling. These examples emphasize the enhanced capabil-
ity of the fusion model to detect high-level inconsistencies
beyond individual appearance, motion, or geometry assess-
ments..

6. Clarification on Research Scope
L3DE focuses explicitly on 3D visual coherence, specifi-
cally assessing appearance, motion, and geometry, as these
dimensions are fundamental prerequisites for realistic sim-
ulations. It is important to clarify that our method does
not comprehensively evaluate all the aspects related to
world simulation such as complex interactions (e.g., ac-
curate physics-based interactions, fluid dynamics). Thus,
L3DE provides a targeted assessment specifically related to
foundational 3D visual coherence, forming a necessary ba-



sis for further advancements towards comprehensive world
simulation.

7. Limitations
Although our study takes a very first step to assess the 3D
simulation capabilities of AI-generated videos, several chal-
lenges remain: 1.) Dataset Size and Diversity: Currently,
we use 160000 video clips to train L3DE model. However,
the real-world patterns are very complicated and training on
more videos will provide a more general and robust evalua-
tion tool. 2.) Limited Generative Video Length: Due to the
constraints of current open-source generative video mod-
els, which produce relatively short videos, it is challenging
to evaluate long-range coherence and object permanence of
the future generative videos. To address these limitations,
we plan to continually update L3DE to adapt to the genera-
tive videos in the future, and further explore its potential in
broader data-centric research [8, 22–24, 30, 31].
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Figure 7. Visualization of randomly sampled paired videos. The images on the left are the image prompts for the generated videos and
their first frame. The remaining images show the subsequent frames of the real videos and the generated videos.
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Figure 8. Appearance Grad-CAM results of L3DE. For the first video, appearance Grad-CAM detect unstable scene appearances in
the connecting regions between the two scenes, such as objects suddenly appearing or disappearing. For the second video, Appearance
Grad-CAM detect regions with inconsistent scene appearance styles. Specifically, the first half of the video depicts a realistic cowshed, but
it generates cartoon-style cows inside. For the third video, Appearance Grad-CAM detect a sudden change in the texture of the wooden
board and food in the video. More specifically, the color of the wooden board and the food in the marked area change significantly between
consecutive frames.
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Figure 9. Motion Grad-CAM results of L3DE. For the first video, Motion Grad-CAM detect unnatural motion patterns of the wolves.
In the video, the movement of the wolves in the marked area is accompanied by an appearance-disappearance phenomenon, which does
not conform to real-world motion patterns. For the second video, Grad-CAM detect regions where the wolf exhibits unnatural motion.
Specifically, a wolf that appears with normal four legs in the reference frame experiences sudden disappearance of its legs when moving in
subsequent frames. Such motion patterns are inconsistent with real-world ones. For the third video, Grad-CAM detect a sudden unnatural
’compression’ motion in the bus, which remain stationary in the first half of the video. This does not conform to real-world motion laws.
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Figure 10. Geometry Grad-CAM results of L3DE. For the first video, Grad-CAM detect inconsistent geometric structures in the person’s
feet, thereby highlighting the corresponding regions. Specifically, the foot region in the analyzed frame differs from that in the reference
frame, exhibiting noticeable blurring and distortion. Such degradation of geometric structure does not conform to real-world patterns.
For the second video, Grad-CAM detect an abnormal geometric change in the hammer. In the first half of the video, the elderly person
holds a single hammer, but in the subsequent frame, the geometry of the hammer suddenly exhibits a ’cloning’ effect, splitting into two.
Such geometric inconsistency does not conform to real-world geometry rules. For the third video, Grad-CAM detect regions where a chair
suddenly appears in the video. Such sudden changes in scene geometry are inconsistent with real-world patterns.
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